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Abstract 

Magnetic field response due to the injection of electric current into the ground 
can be used to explore the earth structure. We derive analytical solutions of the 
steady state magnetic field due to a direct current source on a continuous 
conductivity earth structures. A 2-dimensional exponentially varying 
conductivity of the ground is used in our study. Our solutions in the form of 
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magnetic field are obtained by solving a boundary value problem in the wave 
number domain and then transforming the solution in the wave number  
domain back to the spatial domain. An inverse problem via the use of the 
Newton-Raphson optimization technique is introduced for finding the 
conductivity parameter. The optimal result of our model is close to the true 
value after using only 6 iterations. 

1. Introduction 

In geophysical explorations, the traditional resistivity method maps 
the electrical properties of the earth by measuring the differences in 
potential caused by a direct current flow between two current electrodes 
at the earth’s surface. Usually, interpretations of electrical soundings are 
conducted by assuming that the earth’s structure consists of horizontally 
stratified layers having 1-dimensional constant conductivities. A layered 
earth model is used to simulate the stratigraphic target. However, in the 
real earth situation, there are cases, where the subsurface conductivity 
varies continuously rather than discontinuously with depth. This problem 
was first treated by Mallick and Roy [5], who obtained a theoretical 
solution for the problem of a 1-dimensional two-layered earth with 
transitional boundary. Jain [3] presented expressions for a 1-dimensional 
apparent resistivity of a three-layered earth, where the conductivity in 
the second layer varies linearly with depth and changes abruptly at the 
boundaries. Koefoed [4] solved the problem of a 1-dimensional layered 
earth model containing an arbitrary number of homogeneous layers and 
of transitional layers in which, the resistivity vary linearly with depth. 
Banerjee et al. [1] obtained expressions for a 1-dimensional apparent 
resistivity of a multilayered earth with a layer having binomially varying 
conductivity. 

In this paper, the electrical exploration method based on the 
measurement of low-level, low-frequency magnetic fields associated with 
non-inductive current flow between two current electrodes is introduced. 
Analytical solutions of the steady state magnetic field due to a direct 
current source on a half space with 2-dimensional exponentially varying 
conductivities with radial and depth are derived. The method of 
separation of variables is introduced to our problems and analytical 
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results are obtained with the used of integral transformation. The 
inversion process, using the Newton-Raphson method, is conducted to 
estimate a conductivity parameter of the ground. 

2. Model and Basic Equations 

In our geometric model, a point source of direct current I is located at 
the interface between two half-spaces. The half-space above the interface 
( )0<z  is the region of air with conductivity approximately equal to zero, 
whereas the half-space below the interface is a continuous conductivity 
earth with depths ( ).0>z  The conductivity of this half-space is denoted 
as a function of both radial r and depth z. The general steady state 
Maxwell’s equations in the frequency domain [9] can be used to determine 
the magnetic field for this problem, namely, 

,0=×∇ E  (1) 

and  

,EH σ=×∇  (2) 

where E  is the vector electric field intensity, H  is the vector magnetic 
field intensity, and σ  is the conductivity of the medium. Elimination of 
E  from Equations (1) and (2), we obtain 

.01 =×∇
σ

×∇ H  (3) 

In cylindrical coordinate system ( ),,, zr φ  the components in the 
direction of unit vector ,ˆ,ˆ φeer  and zê  of Equation (3) can be written, 
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and  
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where ,, φHHr  and zH  are represented to the components of H  in the 

direction of ,ˆ,ˆ φeer  and ,ˆze  respectively. Since the problem is axi-symmetric 

and H  has only the azimuthal component in cylindrical coordinate 
system for simplicity, we use H to represent the azimuthal component in 
the following derivations and obtain: 
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where ( ) .,, φ=φ= HzrHH  

In our study now, the conductivity of the ground is denoted as a 

2-dimensional exponential function of r and z such that ( ) ( )., 1
zrbezr +σ=σ  

Thus, the above partial differential equation becomes 
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Let the solution of Equation (5) is denoted as 

( ) ( ),rRzZH =  

where ( )zZ  is a function of z and ( )rR  is a function of r. Substituting 

( ) ( )rRzZH =  into Equation (5) and dividing the result by ( ) ( ),rRzZ  

which we now obtain 
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The above equation can be separated to 
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where λ  is a constant. The solution of (6) is given by 

( ) ,21 21
zmzm eAeAzZ +=  (8) 

where 1A  and 2A  are arbitrary constants, and 2
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to obtain solution of (7) as 
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where 1B  and 2B  are arbitrary constants. The condition of H tends to 

zero as r and z go to infinity. The solution of (5) is obtained from (8) and 
(9) via the integral transformation [6, 7] as 
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where C is an arbitrary constant, ∆  is the interval of partition in the 
direction of r, and 
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The arbitrary constant C can be determined from the boundary condition. 
That is, the current density is zero at the ground surface, except for at the 
probe source and can be obtained as 
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3. Numerical Experiment and Inversion Process 

In the nature, the variation of conductivity of the ground profile can 
stand for the weathered zone such that near sea shore areas, where the 
degree of weathering diminishes with depth. For simplicity, the electrical 
conductivity is assumed to be exponentially dependent upon the radial r 

and the depth z, and can be frequently denoted by ( ) ( ),, 1
zrbezr +σ=σ  

where 1σ  and b are conductivity parameters of the ground. In our inverse 

model example, we simulate the reflection of magnetic radiation data 
from our forward model of the earth structure. Chave’s algorithm [2] is 
used for numerically calculating the integral transform of the magnetic 
field solution. The special functions are computed by using the numerical 
recipes source codes (Press et al. [8]). The electric current of 1 ampere is 
used in our computations. The example model is a heterogeneous 
conductive half-space having exponentially varying conductivity given by 

( ) ( ) ./, 5.0 mSezr zr+=σ  

The conductivity parameter ,/11 mS=σ  which is assumed to be known 

from the measurement at the probe source on the ground surface. The 
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iterative procedure using the Newton-Raphson method is applied to 
estimate the model parameter b of conductivity variation. Random errors 
up to 3% are superimposed on the magnetic field from the forward 
problem to simulate the set of real data. We start the iterative process to 
find the value of the conductivity parameter with an initial guess 

./2.0 mS  The optimal result converges very fast to the true value with 

percentage error less than 1% after using only 6 iterations as shown in 
Table 1. The graph of the true and calculated conductivity models are 
plotted as shown in Figure 1. It is clear that the graph of the calculated 
model is very close to the true model. This illustrates the advantage in 
using Newton-Raphson method. 

Table 1. Perform the number of iterations used to compute the 
conductivity parameter b with sum of square error for magnetic field 

No. of iteration 
1 2 3 4 5 6 

Conductivity 
parameter b 

0.200 0.801 0.404 0.599 0.520 0.499 

Sum of square 
error of 

magnetic field 
8.955491 0.022926 0.004391 0.002553 0.000172 0.000011 
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Figure 1. Relation between conductivities and source-receiver spacing of 
true and calculated models at .0mz =  

4. Conclusion 

Analytical solutions of the steady state magnetic field due to a direct 
current source are derived. The 2-dimensional exponentially conductivity 
model for ground structure is used in our study. The simple method of 
separation of variables is used to solve partial differential equation with 
the integral transformations. The inversion process, using the Newton-
Raphson method, is conducted to estimate a conductivity parameter of 
the ground. The optimal result is close to the true value after using only 6 
iterations. The method leads to good result and has very high speed of 
convergence. 
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